
Algebraic torus actions on Fukaya categories

Yusuf Barış Kartal
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Motivation

Let (M, ω) be a closed symplectic manifold. Given closed 1-form α, define
Xα by ω(·,Xα) = α, let ϕt

α denote flow of Xα.

Given (nice) Lagrangians L, L′ ⊂ M, we have the family of Floer homology
groups HF (L, ϕt

α(L′)) parametrized by t.

More generally, given v ∈ H1(M,R), let ϕv = ϕ1
α for some α such that

v = [α]. We obtain family

{HF (L, ϕv (L′)) : v ∈ H1(M,R)}
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Motivation

Example

Then,

HF (L, ϕv (L′)) =

{
H∗(S1), if v ∈ Z× R
0, otherwise

Yusuf Barış Kartal (Princeton) Algebraic torus actions on Fukaya categories February 5, 2021 4 / 22



Motivation

Example (cont’d)

HF (L, ϕv (L′)) =

{
H∗(S1), if v ∈ Z× R
0, otherwise

Restrict to R× {0}, support is

Observe: Not an algebraic set, cannot be defined using polynomials of
x , ex , etc.
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Motivation

Extend by local systems:

Notation

Let Λ = C((TR)), Gm = Λ∗. Define
UΛ := val−1

T (0) = {a + higher powers of T : a ∈ C∗} = “the unitary
group” ⊂ Gm.

For any ξ ∈ H1(M,UΛ), unitary local system, define HF (L, (L′, ξ|L′)).
Observe, Gm

∼= R× UΛ,T
rξ 7→ (r , ξ). Hence,

H1(M,Gm)
∼=−→ H1(M,R)× H1(M,UΛ)

z = (T v1ξ1,T v2ξ2, . . . ) 7→ ((v1, v2, . . . ), (ξ1, ξ2, . . . ))

i.e. “z = T vξ”. Let ϕz(L) := (ϕv (L), ξ|L). We get a family

{HF (L, ϕz(L′)) : z ∈ H1(M,Gm)}
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Motivation

Remark

One expects to fit this family into an “analytic sheaf”, but not an
algebraic one (as torus example has shown).

Question: Is it ever algebraic?
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Main result

Theorem 1

Let (M, ω) be negatively monotone, integral, “strongly non-degenerate”,
L, L′ be tautologically unobstructed. Then, there exists an algebraic
coherent sheaf (more precisely, a complex of such) over H1(M,Gm),
whose restriction at z has cohomology HF (L, ϕz(L′)).

Remark

Theorem 1 also holds for M Weinstein, L, L′ compact, but requires other
techniques.

Corollary

dim(HF (L, ϕz(L′))) is constant for z in a non-empty Zariski open subset
of H1(M,Gm).
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Main result

Corollary

Given α as before, dim(HF (L, ϕt
α(L′))) is constant in t, with finitely many

exceptions.

Example

HF (L, ϕt
α(L′)) =

{
H∗(S1), at a single t ∈ R
0 otherwise

More sophisticated examples can be constructed on M = Σ2 × Σ2, etc.
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Assumptions

M is non-degenerate (i.e. satisfies generation criteria) ⇒ technical
assumption

F(M) is generated by a set of Bohr-Sommerfeld monotone
Lagrangians {Li}

B-S monotone ⇒ there are finitely many rigid holomorphic discs with
fixed boundary conditions on {Li}

Notation

F(M) denotes the Fukaya category with objects {Li}.
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Main tool: algebraic torus action

Construct an action of H1(M,Gm) on the Fukaya category, by
quasi-functors.

Quasi-functor=A∞-bimodule=instead of telling ϕz y F(M), we tell
HF (Li , ϕz(Lj)) (c.f. quilted Floer homology)

(Algebraic) action by quasi-functors= (algebraic) family of bimodules

Definition

Let Φ|z(Li , Lj) = Λ〈Li ∩ Lj〉. Define µ1(x) =
∑
±TE(u)z [∂hu].y , where u

varies over

Yusuf Barış Kartal (Princeton) Algebraic torus actions on Fukaya categories February 5, 2021 11 / 22



Main tool: algebraic torus action

Remark

The sums
∑
±TE(u)z [∂hu].y are finite due to Bohr-Sommerfeld condition,

so Φ|z is defined for all z ∈ H1(M,Gm).
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Main tool: algebraic torus action

Observe Λ[zH1(M)] = O(H1(M,Gm)).

Definition

Define family Φ of bimodules by Φ(Li , Lj) = Λ[zH1(M)]〈Li ∩ Lj〉 and
µ1(x) =

∑
±TE(u)z [∂hu].y as before. To define higher structure maps

count

with weight TE(u)z [∂hu] as before.

Φ|z can be obtained by evaluating at the specific z ∈ H1(M,Gm).
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How geometric is Φ|z?

Lemma (Fukaya’s trick)

Let z = T vξ be such that v ∈ H1(M,R) is close to 0. Then, Φ|z
corresponds to ϕz , i.e.

hL ⊗F(M) Φ|z ' hϕz (L)

Terms and notation:

hL=right Yoneda module of L, well-defined even if L 6∈ F(M)

⊗F(M)Φ|z=convolution with Φ|z . Should be thought as the action of
the quasi-functor Φ|z on L

Corollary

H∗(hL′ ⊗F(M) Φ|z ⊗F(M) h
L) ∼= H∗(hϕz (L′) ⊗F(M) h

L) ∼= HF (L, ϕz(L′)) for
z = T vξ with small v .
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How geometric is Φ|z?

hL′ ⊗F(M) Φ|z ⊗F(M) h
L can be obtained from hL′ ⊗F(M) Φ⊗F(M) h

L, by

evaluating at z . Observe hL′ ⊗F(M) Φ⊗F(M) h
L

is a complex of Λ[zH1(M)] = O(H1(M,Gm))-modules

is by construction algebraic

has coherent cohomology (follows from abstract non-sense)

So, hL′ ⊗F(M) Φ⊗F(M) h
L is our candidate for the algebraic sheaf

mentioned in the theorem.
Need: Lemma above (hence, its corollary) to hold for all z ∈ H1(M,Gm),
i.e. hL ⊗F(M) Φ|z ' hϕz (L).
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How geometric is Φ|z?

Lemma

If Φ|z2 ⊗F(M) Φ|z1 ' Φ|z1z2 hold for all z1, z2, then hL ⊗F(M) Φ|z ' hϕz (L)

for all z .

Sketch of the proof.

Assume z = T v , v ∈ H1(M,R), fix α such that v = [α]. Consider the
isotopy ϕt

α(L), t ∈ [0, 1].
By the lemma, for every t, there exists an εt > 0 such that
hϕt

α(L) ⊗F(M) Φ|T sv ' hϕt+s
α (L), for every |s| < εt . Cover [0, 1] by finitely

many of (t − εt , t + εt). Choose 0 = t0 < t1 < · · · < tk = 1 such that two
adjacent ti are in the same such interval. Then

hϕ1
α(L) ' hL ⊗F(M) Φ|T t1v ⊗F(M) Φ|T (t2−t1)v ⊗F(M) . . .Φ|T (tk−tk−1)v '

hL ⊗F(M) Φ|T tk v = hL ⊗F(M) Φ|z
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Group action property

Need: Φ|z2 ⊗F(M) Φ|z1 ' Φ|z1z2 .

Convolution ⊗F(M) here can be thought as composition of
quasi-functors.

Hence, this condition is basically saying family Φ is an action of
H1(M,Gm) by quasi-functors.

Define a bimodule homomorphism

F : Φ|z2 ⊗F(M) Φ|z1 → Φ|z1z2

by counting

with weight TE(u)z
[∂1u]
1 z

[∂2u]
2 (c.f. Lekili-Lipyanskiy).

Yusuf Barış Kartal (Princeton) Algebraic torus actions on Fukaya categories February 5, 2021 17 / 22



Group action property

Abstract non-sense ⇒ F is a quasi-isomorphism when z1, z2 ∈ H1(M,UΛ)
Goal: Show F is a quasi-isomorphism everywhere

1 Compute the “deformation class” of Φ and cone(F )

2 Φ, cone(F ) “follow” specific (Hochschild) cohomology classes

3 Hence, Hom(cone(F ), cone(F )) carries a connection, also vanishes at
z1, z2 ∈ H1(M,UΛ) ⊂ H1(M,Gm)

4 Abstract non-sense again ⇒ Hom(cone(F ), cone(F )) is coherent

Therefore, Hom(cone(F ), cone(F )) vanishes everywhere, i.e. F is a
quasi-isomorphism. This completes the proof of group action property
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Summary

1 Construct an algebraic family Φ of quasi-functors of F(M)

2 Fukaya’s trick ⇒ Φ|z is geometric for small z (i.e. acts like a
symplectomorphism+unitary local system)

3 Write a transformation F : Φ|z2 ⊗F(M) Φ|z1 → Φ|z1z2 , show that it is a
quasi-isomorphism

4 Conclude Φ|z is geometric for all z

5 Conclude hL′ ⊗F(M) Φ⊗F(M) h
L has cohomology HF (L, ϕz(L′)) at z

This proves the main theorem. In other words, the groups HF (L, ϕz(L′))
fit into an algebraic sheaf.
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Other corollaries, applications

Corollary

dim(HF (L, ϕz(L′))) define an algebraic stratification of H1(M,Gm).

Theorem 2

“The stabilizer” {z : ϕz(L) ∼ L} ⊂ H1(M,Gm) form an algebraic subtorus
of H1(M,Gm) with Lie algebra given by ker(H1(M,Λ)→ H1(L,Λ)).

Idea of the proof.

The compositions
µ2 : HF (ϕz(L), L)⊗ HF (L, ϕz(L))→ HF (L, L)

µ2 : HF (L, ϕz(L))⊗ HF (ϕz(L), L)→ HF (ϕz(L), ϕz(L))

also vary algebraically. Consider the locus of z where µ2’s hit 1.

Note: The relation ∼ is slightly weaker than a quasi-isomorphism (unless
L is connected).
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Other corollaries, applications

Corollary

If ϕ1
α(L) ∼ L (e.g. Hamiltonian isotopic), then α|L = 0.

A final application is to mirror symmetry (for this assume M is Weinstein):

Theorem 3

Assume W(M) is equivalent to Db(Coh(X )), where X is a projective or
affine variety, such that there exists an exact Lagrangian torus L carried to
(the structure sheaf of) a smooth point of X . Also assume
H1(M,Λ)→ H1(L,Λ) is surjective. Then, there exists an affine torus chart

Gb1(L)
m ⊂ X around x whose other points are mirror to Lagrangian tori

isotopic to L.
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Thank you!
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