Algebraic torus actions on Fukaya categories

Yusuf Barış Kartal

Princeton University

February 5, 2021

Yusuf Barış Kartal (Princeton) Algebraic torus actions on Fukaya categories

Motivation and the main result

- 2 Algebraic torus action on $\mathcal{F}(M)$
- Group action property
- Other corollaries and applications

Let (M, ω) be a closed symplectic manifold. Given closed 1-form α , define X_{α} by $\omega(\cdot, X_{\alpha}) = \alpha$, let φ_{α}^{t} denote flow of X_{α} .

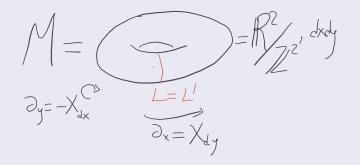
Given (nice) Lagrangians $L, L' \subset M$, we have the family of Floer homology groups $HF(L, \varphi_{\alpha}^{t}(L'))$ parametrized by t.

More generally, given $v \in H^1(M, \mathbb{R})$, let $\varphi_v = \varphi_\alpha^1$ for some α such that $v = [\alpha]$. We obtain family

 $\{HF(L, \varphi_v(L')): v \in H^1(M, \mathbb{R})\}$

Motivation

Example



Then,

$$HF(L, \varphi_v(L')) = egin{cases} H^*(S^1), & ext{if } v \in \mathbb{Z} imes \mathbb{R} \ 0, & ext{otherwise} \end{cases}$$

イロト イヨト イヨト

Example (cont'd)

$$\mathit{HF}(L, arphi_v(L')) = egin{cases} H^*(S^1), & ext{if } v \in \mathbb{Z} imes \mathbb{R} \ 0, & ext{otherwise} \end{cases}$$

Restrict to $\mathbb{R}\times\{0\},$ support is

Observe: Not an algebraic set, cannot be defined using polynomials of x, e^x , etc.

Motivation

Extend by local systems:

Notation

Let
$$\Lambda = \mathbb{C}((T^{\mathbb{R}}))$$
, $\mathbb{G}_m = \Lambda^*$. Define
 $U_{\Lambda} := vaI_T^{-1}(0) = \{a + \text{higher powers of } T : a \in \mathbb{C}^*\} = \text{"the unitary group"} \subset \mathbb{G}_m.$

For any $\xi \in H^1(M, U_{\Lambda})$, unitary local system, define $HF(L, (L', \xi|_{L'}))$. Observe, $\mathbb{G}_m \cong \mathbb{R} \times U_{\Lambda}, T^r \xi \mapsto (r, \xi)$. Hence,

$$\begin{array}{c} H^1(M,\mathbb{G}_m) \xrightarrow{\cong} H^1(M,\mathbb{R}) \times H^1(M,U_{\Lambda}) \\ z = (T^{v_1}\xi_1, T^{v_2}\xi_2, \dots) \mapsto ((v_1,v_2,\dots), (\xi_1,\xi_2,\dots)) \\ \text{.e. } "z = T^v\xi". \text{ Let } \varphi_z(L) := (\varphi_v(L),\xi|_L). \text{ We get a family} \end{array}$$

$$\{HF(L, \varphi_z(L')): z \in H^1(M, \mathbb{G}_m)\}$$

Remark

One expects to fit this family into an "analytic sheaf", but not an algebraic one (as torus example has shown).

Question: Is it ever algebraic?

Theorem 1

Let (M, ω) be negatively monotone, integral, "strongly non-degenerate", L, L' be tautologically unobstructed. Then, there exists an algebraic coherent sheaf (more precisely, a complex of such) over $H^1(M, \mathbb{G}_m)$, whose restriction at z has cohomology $HF(L, \varphi_z(L'))$.

Remark

Theorem 1 also holds for M Weinstein, L, L' compact, but requires other techniques.

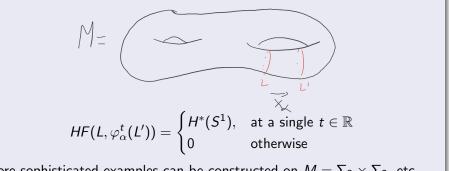
Corollary

 $dim(HF(L, \varphi_z(L')))$ is constant for z in a non-empty Zariski open subset of $H^1(M, \mathbb{G}_m)$.

Corollary

Given α as before, dim(HF(L, $\varphi_{\alpha}^{t}(L'))$) is constant in t, with finitely many exceptions.

Example



More sophisticated examples can be constructed on $M = \Sigma_2 \times \Sigma_2$, etc.

- M is non-degenerate (i.e. satisfies generation criteria) ⇒ technical assumption
- \$\mathcal{F}(M)\$ is generated by a set of Bohr-Sommerfeld monotone Lagrangians \$\{L_i\}\$

B-S monotone \Rightarrow there are finitely many rigid holomorphic discs with fixed boundary conditions on $\{L_i\}$

Notation

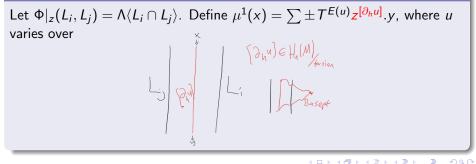
 $\mathcal{F}(M)$ denotes the Fukaya category with objects $\{L_i\}$.

Main tool: algebraic torus action

Construct an action of $H^1(M, \mathbb{G}_m)$ on the Fukaya category, by quasi-functors.

- Quasi-functor=A_∞-bimodule=instead of telling φ_z ~ F(M), we tell HF(L_i, φ_z(L_j)) (c.f. quilted Floer homology)
- (Algebraic) action by quasi-functors= (algebraic) family of bimodules

Definition



Remark

The sums $\sum \pm T^{E(u)} z^{[\partial_h u]} y$ are finite due to Bohr-Sommerfeld condition, so $\Phi|_z$ is defined for all $z \in H^1(M, \mathbb{G}_m)$.

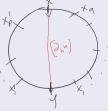
12 / 22

Main tool: algebraic torus action

Observe
$$\Lambda[z^{H_1(M)}] = \mathcal{O}(H^1(M, \mathbb{G}_m)).$$

Definition

Define family Φ of bimodules by $\Phi(L_i, L_j) = \Lambda[z^{H_1(M)}] \langle L_i \cap L_j \rangle$ and $\mu^1(x) = \sum \pm T^{E(u)} z^{[\partial_h u]} y$ as before. To define higher structure maps count



with weight $T^{E(u)}z^{[\partial_h u]}$ as before.

 $\Phi|_z$ can be obtained by evaluating at the specific $z \in H^1(M, \mathbb{G}_m)$.

Lemma (Fukaya's trick)

Let $z = T^{\nu}\xi$ be such that $\nu \in H^1(M, \mathbb{R})$ is close to 0. Then, $\Phi|_z$ corresponds to φ_z , i.e.

$$h_L \otimes_{\mathcal{F}(M)} \Phi|_z \simeq h_{\varphi_z(L)}$$

Terms and notation:

- h_L =right Yoneda module of L, well-defined even if $L \notin \mathcal{F}(M)$
- ⊗_{F(M)}Φ|_z=convolution with Φ|_z. Should be thought as the action of the quasi-functor Φ|_z on L

Corollary

 $\begin{aligned} H^*(h_{L'} \otimes_{\mathcal{F}(M)} \Phi|_z \otimes_{\mathcal{F}(M)} h^L) &\cong H^*(h_{\varphi_z(L')} \otimes_{\mathcal{F}(M)} h^L) \cong HF(L,\varphi_z(L')) \text{ for } \\ z &= T^v \xi \text{ with small } v. \end{aligned}$

э

< □ > < □ > < □ > < □ > < □ > < □ >

 $h_{L'} \otimes_{\mathcal{F}(M)} \Phi|_z \otimes_{\mathcal{F}(M)} h^L$ can be obtained from $h_{L'} \otimes_{\mathcal{F}(M)} \Phi \otimes_{\mathcal{F}(M)} h^L$, by evaluating at z. Observe $h_{L'} \otimes_{\mathcal{F}(M)} \Phi \otimes_{\mathcal{F}(M)} h^L$

- is a complex of $\Lambda[z^{H_1(M)}] = \mathcal{O}(H^1(M, \mathbb{G}_m))$ -modules
- is by construction algebraic
- has coherent cohomology (follows from abstract non-sense)

So, $h_{L'} \otimes_{\mathcal{F}(M)} \Phi \otimes_{\mathcal{F}(M)} h^L$ is our candidate for the algebraic sheaf mentioned in the theorem.

Need: Lemma above (hence, its corollary) to hold for all $z \in H^1(M, \mathbb{G}_m)$, i.e. $h_L \otimes_{\mathcal{F}(M)} \Phi|_z \simeq h_{\varphi_z(L)}$.

Lemma

If $\Phi|_{z_2} \otimes_{\mathcal{F}(M)} \Phi|_{z_1} \simeq \Phi|_{z_1 z_2}$ hold for all z_1, z_2 , then $h_L \otimes_{\mathcal{F}(M)} \Phi|_z \simeq h_{\varphi_z(L)}$ for all z.

Sketch of the proof.

Assume $z = T^{v}$, $v \in H^{1}(M, \mathbb{R})$, fix α such that $v = [\alpha]$. Consider the isotopy $\varphi_{\alpha}^{t}(L), t \in [0, 1]$. By the lemma, for every t, there exists an $\epsilon_{t} > 0$ such that $h_{\varphi_{\alpha}^{t}(L)} \otimes_{\mathcal{F}(M)} \Phi|_{T^{sv}} \simeq h_{\varphi_{\alpha}^{t+s}(L)}$, for every $|s| < \epsilon_{t}$. Cover [0, 1] by finitely many of $(t - \epsilon_{t}, t + \epsilon_{t})$. Choose $0 = t_{0} < t_{1} < \cdots < t_{k} = 1$ such that two adjacent t_{i} are in the same such interval. Then

$$\begin{split} h_{\varphi_{\alpha}^{1}(L)} \simeq h_{L} \otimes_{\mathcal{F}(M)} \Phi|_{\mathcal{T}^{t_{1}v}} \otimes_{\mathcal{F}(M)} \Phi|_{\mathcal{T}^{(t_{2}-t_{1})v}} \otimes_{\mathcal{F}(M)} \dots \Phi|_{\mathcal{T}^{(t_{k}-t_{k-1})v}} \simeq \\ h_{L} \otimes_{\mathcal{F}(M)} \Phi|_{\mathcal{T}^{t_{k}v}} = h_{L} \otimes_{\mathcal{F}(M)} \Phi|_{z} \end{split}$$

Group action property

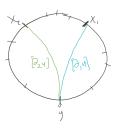
Need: $\Phi|_{z_2} \otimes_{\mathcal{F}(M)} \Phi|_{z_1} \simeq \Phi|_{z_1 z_2}$.

- Convolution ⊗_{F(M)} here can be thought as composition of quasi-functors.
- Hence, this condition is basically saying family Φ is an action of $H^1(M, \mathbb{G}_m)$ by quasi-functors.

Define a bimodule homomorphism

$$F: \Phi|_{z_2} \otimes_{\mathcal{F}(M)} \Phi|_{z_1} \to \Phi|_{z_1 z_2}$$

by counting



with weight $T^{E(u)}z_1^{[\partial_1 u]}z_2^{[\partial_2 u]}$ (c.f. Lekili-Lipyanskiy).

Abstract non-sense \Rightarrow *F* is a quasi-isomorphism when $z_1, z_2 \in H^1(M, U_{\Lambda})$ **Goal:** Show *F* is a quasi-isomorphism everywhere

- **(**) Compute the "deformation class" of Φ and *cone*(*F*)
- **2** Φ , *cone*(*F*) "follow" specific (Hochschild) cohomology classes
- Section 3: Sectio
- Abstract non-sense again \Rightarrow Hom(cone(F), cone(F)) is coherent

Therefore, Hom(cone(F), cone(F)) vanishes everywhere, i.e. F is a quasi-isomorphism. This completes the proof of group action property

- **()** Construct an algebraic family Φ of quasi-functors of $\mathcal{F}(M)$
- Pukaya's trick ⇒ Φ|_z is geometric for small z (i.e. acts like a symplectomorphism+unitary local system)
- Solution Write a transformation $F : \Phi|_{z_2} \otimes_{\mathcal{F}(M)} \Phi|_{z_1} \to \Phi|_{z_1z_2}$, show that it is a quasi-isomorphism
- Conclude $\Phi|_z$ is geometric for all z

Solution Conclude $h_{L'} \otimes_{\mathcal{F}(M)} \Phi \otimes_{\mathcal{F}(M)} h^L$ has cohomology $HF(L, \varphi_z(L'))$ at z. This proves the main theorem. In other words, the groups $HF(L, \varphi_z(L'))$ fit into an algebraic sheaf.

19/22

Corollary

 $dim(HF(L, \varphi_z(L')))$ define an algebraic stratification of $H^1(M, \mathbb{G}_m)$.

Theorem 2

"The stabilizer" $\{z : \varphi_z(L) \sim L\} \subset H^1(M, \mathbb{G}_m)$ form an algebraic subtorus of $H^1(M, \mathbb{G}_m)$ with Lie algebra given by $\ker(H^1(M, \Lambda) \to H^1(L, \Lambda))$.

Idea of the proof.

The compositions

 $\mu^{2}: HF(\varphi_{z}(L), L) \otimes HF(L, \varphi_{z}(L)) \to HF(L, L)$ $\mu^{2}: HF(L, \varphi_{z}(L)) \otimes HF(\varphi_{z}(L), L) \to HF(\varphi_{z}(L), \varphi_{z}(L))$

also vary algebraically. Consider the locus of z where μ^2 's hit 1.

Note: The relation \sim is slightly weaker than a quasi-isomorphism (unless *L* is connected).

Corollary

If
$$\varphi_{\alpha}^{1}(L) \sim L$$
 (e.g. Hamiltonian isotopic), then $\alpha|_{L} = 0$.

A final application is to mirror symmetry (for this assume M is Weinstein):

Theorem 3

Assume W(M) is equivalent to $D^b(Coh(X))$, where X is a projective or affine variety, such that there exists an exact Lagrangian torus L carried to (the structure sheaf of) a smooth point of X. Also assume $H^1(M, \Lambda) \to H^1(L, \Lambda)$ is surjective. Then, there exists an affine torus chart $\mathbb{G}_m^{b_1(L)} \subset X$ around x whose other points are mirror to Lagrangian tori isotopic to L.

Thank you!

(日) (四) (日) (日) (日)

æ